A straight line segment is 36 cm long. Points are to be marked on the line from both endpoints. From each end, the first point is at a distance of 1 cm from the end, the second point is at a distance of 2 cm from the first point and the third point is at a distance of 3 cm from the second point and so on. If the points on the ends are not counted and the common points are counted as one, what is the number of points?

A straight line segment is 36 cm long. Points are to be marked on the line from both endpoints. From each end, the first point is at a distance of 1 cm from the end, the second point is at a distance of 2 cm from the first point and the third point is at a distance of 3 cm from the second point and so on. If the points on the ends are not counted and the common points are counted as one, what is the number of points? Correct Answer 10

The line with points as per the data would look like this:

1+ 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 + 1 = 36 cm

Hence, there will be 10 points on the line.

Related Questions

The letters P, Q, R, S, T and U are to be placed one per vertex on a regular convex hexagon, but not necessarily in the same order. Consider the following statements: The line segment joining R and S is longer than the line segment joining P and Q. The line segment joining R and S is perpendicular to the line segment joining P and Q. The line segment joining R and U is parallel to the line segment joining T and Q. Based on the above statements, which one of the following options is CORRECT?
How far is point 'R' from Point 'T'? Statement (I): Point 'R' is 5 metres to the north of point 'M'. Point 'U' is 4 metres to the east of point 'R'. Point 'T' is to the west of point 'R' such that points 'U' 'R' and 'T' form a straight line of  metres. Statement (II): Point 'Z' is metres to the south of point 'T'. Point 'U' is  metres to the east of point 'T'. Point 'M' is  metres to the east of point 'Z'. Point 'R' is  metres to the north of point 'M'. Point 'R' lies on the line formed by joining points 'T' and 'U'.