A hook attached to a crane is 20 m above ground, and at an angle of elevation of 30° from a car. By how much should the hook be raised so that its angle of elevation with the car is increased to 60°? 

A hook attached to a crane is 20 m above ground, and at an angle of elevation of 30° from a car. By how much should the hook be raised so that its angle of elevation with the car is increased to 60°?  Correct Answer 40 m

Let the distance between the crane and the car be ‘x’ m

∵ tan θ = opposite/adjacent

⇒ tan 30° = 20/x

⇒ 1/√3 = 20/x

⇒ x = 20√3 m

Let the hook be raised by ‘y’ m to achieve an angle of elevation of 60° as shown below,

⇒ tan 60° = (y + 20)/x

⇒ √3 = (y + 20)/20√3

⇒ 20(3) = y + 20

⇒ y = 60 – 20 = 40 m

∴ The hook should be raised by 40 m

Related Questions

B' was under the regular employment of 'A' as a driver of his mobile crane. He let the crane together with 'B' as driver to 'C'. In the course of loading a ship, 'X' was injured by negligent working of the crane by 'B'. At the time of the accident 'C' had the immediate control and direction of the operations to be executed. The working of the crane and the manipulation of its control, however, remained with 'B', In a suit by 'X' against 'C', is:
Read the passage carefully and choose the best answer to each question out of the four alternatives and click the button corresponding to it. The Alaska pipeline starts at the frozen edge of the Arctic Ocean. It stretches southward across the largest and northernmost state in the United States, ending at a remote ice-free seaport village nearly 800 miles from where it begins. It is massive in size and extremely complicated to operate. The steel pipe crosses windswept plains and endless miles of delicate tundra that tops the frozen ground. It weaves through crooked canyons, climbs sheer mountains, plunges over rocky crags, makes its way through thick forests, and passes over or under hundreds of rivers and streams. The pipe is 4 feet in diameter, and up to 2 million barrels (or 84 million gallons) of crude oil can be pumped through it daily. Resting on H-shaped steel racks called "bents", long sections of the pipeline follow a zigzag course high above the frozen earth. Other long sections drop out of sight beneath spongy or rocky ground and return to the surface later on. The pattern of the pipeline's up-and-down route is determined by the often harsh demands of the arctic and subarctic climate, the tortuous lay of the land, and the varied compositions of soil, rock, or permafrost (permanently frozen ground). A little more than half of the pipeline is elevated above the ground. The remainder is buried anywhere from 3 to 12 feet, depending largely upon the type of terrain and the properties of the soil. One of the largest in the world, the pipeline cost approximately $8 billion and is by far the biggest and most expensive construction project ever undertaken by private industry. In fact, no single business could raise that much money, so 8 major oil companies formed a consortium in order to share the costs. Each company controlled oil rights to particular shares of land in the oil fields and paid into the pipeline-construction fund according to the size of its holdings. Today, despite enormous problems of climate, supply shortage, equipment breakdowns, labour disagreements, treacherous terrain, a certain amount of mismanagement, and even theft, the Alaska pipeline has been completed and is operating.
The Alaskan pipeline ends
Read the passage carefully and choose the best answer to each question out of the four alternatives and click the button corresponding to it. The Alaska pipeline starts at the frozen edge of the Arctic Ocean. It stretches southward across the largest and northernmost state in the United States, ending at a remote ice-free seaport village nearly 800 miles from where it begins. It is massive in size and extremely complicated to operate. The steel pipe crosses windswept plains and endless miles of delicate tundra that tops the frozen ground. It weaves through crooked canyons, climbs sheer mountains, plunges over rocky crags, makes its way through thick forests, and passes over or under hundreds of rivers and streams. The pipe is 4 feet in diameter, and up to 2 million barrels (or 84 million gallons) of crude oil can be pumped through it daily. Resting on H-shaped steel racks called "bents", long sections of the pipeline follow a zigzag course high above the frozen earth. Other long sections drop out of sight beneath spongy or rocky ground and return to the surface later on. The pattern of the pipeline's up-and-down route is determined by the often harsh demands of the arctic and subarctic climate, the tortuous lay of the land, and the varied compositions of soil, rock, or permafrost (permanently frozen ground). A little more than half of the pipeline is elevated above the ground. The remainder is buried anywhere from 3 to 12 feet, depending largely upon the type of terrain and the properties of the soil. One of the largest in the world, the pipeline cost approximately $8 billion and is by far the biggest and most expensive construction project ever undertaken by private industry. In fact, no single business could raise that much money, so 8 major oil companies formed a consortium in order to share the costs. Each company controlled oil rights to particular shares of land in the oil fields and paid into the pipeline-construction fund according to the size of its holdings. Today, despite enormous problems of climate, supply shortage, equipment breakdowns, labour disagreements, treacherous terrain, a certain amount of mismanagement, and even theft, the Alaska pipeline has been completed and is operating.
What is the capacity of the Alaskan pipeline?
Read the passage carefully and choose the best answer to each question out of the four alternatives and click the button corresponding to it. The Alaska pipeline starts at the frozen edge of the Arctic Ocean. It stretches southward across the largest and northernmost state in the United States, ending at a remote ice-free seaport village nearly 800 miles from where it begins. It is massive in size and extremely complicated to operate. The steel pipe crosses windswept plains and endless miles of delicate tundra that tops the frozen ground. It weaves through crooked canyons, climbs sheer mountains, plunges over rocky crags, makes its way through thick forests, and passes over or under hundreds of rivers and streams. The pipe is 4 feet in diameter, and up to 2 million barrels (or 84 million gallons) of crude oil can be pumped through it daily. Resting on H-shaped steel racks called "bents", long sections of the pipeline follow a zigzag course high above the frozen earth. Other long sections drop out of sight beneath spongy or rocky ground and return to the surface later on. The pattern of the pipeline's up-and-down route is determined by the often harsh demands of the arctic and subarctic climate, the tortuous lay of the land, and the varied compositions of soil, rock, or permafrost (permanently frozen ground). A little more than half of the pipeline is elevated above the ground. The remainder is buried anywhere from 3 to 12 feet, depending largely upon the type of terrain and the properties of the soil. One of the largest in the world, the pipeline cost approximately $8 billion and is by far the biggest and most expensive construction project ever undertaken by private industry. In fact, no single business could raise that much money, so 8 major oil companies formed a consortium in order to share the costs. Each company controlled oil rights to particular shares of land in the oil fields and paid into the pipeline-construction fund according to the size of its holdings. Today, despite enormous problems of climate, supply shortage, equipment breakdowns, labour disagreements, treacherous terrain, a certain amount of mismanagement, and even theft, the Alaska pipeline has been completed and is operating.
What are "bents"?