If (6a2 – 5ab – 4b2) = 0 and (144a2 + 324b2 + 432ab – 289) = 0, then what will be the value of (a2 + b2) : (a2 – b2) where both ‘a’ and ‘b’ are positive numbers?

If (6a2 – 5ab – 4b2) = 0 and (144a2 + 324b2 + 432ab – 289) = 0, then what will be the value of (a2 + b2) : (a2 – b2) where both ‘a’ and ‘b’ are positive numbers? Correct Answer 25 : 7

GIVEN:

(6a2 – 5ab – 4b2) = 0 and (144a2 + 324b2 + 432ab – 289) = 0

CONCEPT:

Application of algebraic formulas.

FORMULA USED:

(a + b)2 = a2 + b2 + 2ab

(a – b)2 = a2 + b2 – 2ab

CALCULATION:

(6a2 – 5ab – 4b2) = 0

⇒ (6a2 + 3ab – 8ab – 4b2) = 0

⇒ 3a (2a + b) – 4b (2a + b) = 0

⇒ (2a + b)(3a – 4b) = 0

If 2a + b = 0, then either of the two number should be negative. So, we will not consider this case.

⇒ (3a – 4b) = 0     ---- (1)

(144a2 + 324b2 + 432ab – 289) = 0

⇒ 36(4a2 + 9b2 + 12ab) = 289

⇒ (2a + 3b)2 = 289/36

⇒ (2a + 3b) = 17/6      ---- (2)

From (1) and (2):

a = 2/3

⇒ a2 = 4/9

b = 1/2

⇒ b2 = 1/4

Now,

(a2 + b2) = (4/9) + (1/4) = (25/36)

(a2 – b2) = (4/9) – (1/4) = (7/36)

Hence,

Required ratio = (a2 + b2): (a2 – b2) = 25 : 7

Related Questions