If (6a2 – 5ab – 4b2) = 0 and (144a2 + 324b2 + 432ab – 289) = 0, then what will be the value of (a2 + b2) : (a2 – b2) where both ‘a’ and ‘b’ are positive numbers?
If (6a2 – 5ab – 4b2) = 0 and (144a2 + 324b2 + 432ab – 289) = 0, then what will be the value of (a2 + b2) : (a2 – b2) where both ‘a’ and ‘b’ are positive numbers? Correct Answer 25 : 7
GIVEN:
(6a2 – 5ab – 4b2) = 0 and (144a2 + 324b2 + 432ab – 289) = 0
CONCEPT:
Application of algebraic formulas.
FORMULA USED:
(a + b)2 = a2 + b2 + 2ab
(a – b)2 = a2 + b2 – 2ab
CALCULATION:
(6a2 – 5ab – 4b2) = 0
⇒ (6a2 + 3ab – 8ab – 4b2) = 0
⇒ 3a (2a + b) – 4b (2a + b) = 0
⇒ (2a + b)(3a – 4b) = 0
If 2a + b = 0, then either of the two number should be negative. So, we will not consider this case.
⇒ (3a – 4b) = 0 ---- (1)
(144a2 + 324b2 + 432ab – 289) = 0
⇒ 36(4a2 + 9b2 + 12ab) = 289
⇒ (2a + 3b)2 = 289/36
⇒ (2a + 3b) = 17/6 ---- (2)
From (1) and (2):
a = 2/3
⇒ a2 = 4/9
b = 1/2
⇒ b2 = 1/4
Now,
(a2 + b2) = (4/9) + (1/4) = (25/36)
(a2 – b2) = (4/9) – (1/4) = (7/36)
Hence,
Required ratio = (a2 + b2): (a2 – b2) = 25 : 7