If tanx/tany = a, find the value of sin (x + y)/sin (x - y)?

If tanx/tany = a, find the value of sin (x + y)/sin (x - y)? Correct Answer (a + 1)/(a - 1)

Given:

tanx/tany = a

Formula used:

sin (x + y) = sinx.cosy + cosx.siny

sin (x - y) = sinx.cosy - cosx.siny

tan θ = sin θ/cos θ 

Calculation:

∵ tanx/tany = a

⇒ sinx.cosy/cosx.siny = a

⇒ sinx.cosy = a × (cosx.siny)      ------(1)

∵ sin (x + y)/sin (x - y) = (sinx.cosy + cosx.siny)/(sinx.cosy - cosx.siny)

⇒ /

⇒ /

⇒ (a + 1)/(a - 1)

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))
sin25° + sin210° + sin215° + ...... sin285° + sin290° is equal to?