If tanx/tany = a, find the value of sin (x + y)/sin (x - y)?
If tanx/tany = a, find the value of sin (x + y)/sin (x - y)? Correct Answer (a + 1)/(a - 1)
Given:
tanx/tany = a
Formula used:
sin (x + y) = sinx.cosy + cosx.siny
sin (x - y) = sinx.cosy - cosx.siny
tan θ = sin θ/cos θ
Calculation:
∵ tanx/tany = a
⇒ sinx.cosy/cosx.siny = a
⇒ sinx.cosy = a × (cosx.siny) ------(1)
∵ sin (x + y)/sin (x - y) = (sinx.cosy + cosx.siny)/(sinx.cosy - cosx.siny)
⇒ /
⇒ /
⇒ (a + 1)/(a - 1)
মোঃ আরিফুল ইসলাম
Feb 20, 2025