The linear congruence ax ≡ b(mod n) has a solution if and only if,

The linear congruence ax ≡ b(mod n) has a solution if and only if, Correct Answer d | b where, d = (a, n)

Concept:

Consider ax ≡ b(mod n)

It is equivalent to ax - ny = b

now if d = gcd(a, n)

then there exists r, s ∈ Z such that a = dr and n = ds.

Suppose that the solution of ax ≡ b(mod n)  exists.

⇒ The solution of ax - ny = b exists

⇒ ax0 - ny0 = b for some x, y∈ Z 

⇒ b = ax0 - ny0 

⇒ b = drx0 - dsy0 

⇒ b = d(rx0 - sy0) where (rx0 - sy0) is an integer.

⇒ d | b

∴ d | b where, d = (a, n)

i,e.,If d | b then the linear congruence  ax ≡ b(mod n) has d mutually incongruent solution modulo n.

Hence, the correct answer is option  3).

Related Questions

Choose the linear congruence which has exactly 3 solution modulo 3
The system of linear congruence x ≡ ai (mod ni) with gcd(ni, nj) = 1 for i ≠ j has a simultaneous solution which is 
The solution of the linear congruence 4x = 5(mod 9) is?