Related Questions

Laplace transform of the function f(t) is given by $${\text{F}}\left( {\text{s}} \right) = {\text{L}}\left\{ {{\text{f}}\left( {\text{t}} \right)} \right\} = \int_0^\infty {{\text{f}}\left( {\text{t}} \right){{\text{e}}^{ - {\text{st}}}}{\text{dt}}{\text{.}}} $$       Laplace transform of the function shown below is given by
Transform Theory mcq question image
The value of the integral $$\int\limits_{ - \infty }^\infty {\frac{{\sin {\text{x}}}}{{{{\text{x}}^2} + 2{\text{x}} + 2}}{\text{dx}}} $$    evaluated using contour integration and the residue theorem is
The value of the integral $$\int\limits_{ - \infty }^\infty {\frac{{{\text{dx}}}}{{1 + {x^2}}}} $$  is