The velocity of piston in a reciprocating steam engine is given by (where $$\omega $$ = Angular velocity of crank, r = Radius of crank pin circle, $$\theta $$ = Angle turned by crank from inner dead center and n = Ratio of length of connecting rod to the radius of crank)

The velocity of piston in a reciprocating steam engine is given by (where $$\omega $$ = Angular velocity of crank, r = Radius of crank pin circle, $$\theta $$ = Angle turned by crank from inner dead center and n = Ratio of length of connecting rod to the radius of crank) Correct Answer $$\omega {\text{r}}\left( {\sin \theta + \frac{{\sin 2\theta }}{{\text{n}}}} \right)$$

Related Questions

The primary unbalanced force due to inertia of reciprocating parts in a reciprocating engine is given by (where m = Mass of reciprocating parts, $$\omega $$ = Angular speed of crank, r = Radius of crank, $$\theta $$ = Angle of inclination of crank with the line of stroke and n = Ratio of the length of connecting rod to radius of crank)
The secondary unbalanced force due to inertia of reciprocating parts in a reciprocating engine is given by (where m = Mass of reciprocating parts, $$\omega $$ = Angular speed of crank, r = Radius of crank, $$\theta $$ = Angle of inclination of crank with the line of stroke and n = Ratio of the length of connecting rod to radius of crank)
In a reciprocating steam engine, when the crank has turned from inner dead center through an angle $$\theta $$, the angular velocity of the connecting rod is given by