The primary unbalanced force due to inertia of reciprocating parts in a reciprocating engine is given by (where m = Mass of reciprocating parts, $$\omega $$ = Angular speed of crank, r = Radius of crank, $$\theta $$ = Angle of inclination of crank with the line of stroke and n = Ratio of the length of connecting rod to radius of crank)

The primary unbalanced force due to inertia of reciprocating parts in a reciprocating engine is given by (where m = Mass of reciprocating parts, $$\omega $$ = Angular speed of crank, r = Radius of crank, $$\theta $$ = Angle of inclination of crank with the line of stroke and n = Ratio of the length of connecting rod to radius of crank) Correct Answer $${\text{m}}{\omega ^2}{\text{r}}\cos \theta $$

Related Questions

The secondary unbalanced force due to inertia of reciprocating parts in a reciprocating engine is given by (where m = Mass of reciprocating parts, $$\omega $$ = Angular speed of crank, r = Radius of crank, $$\theta $$ = Angle of inclination of crank with the line of stroke and n = Ratio of the length of connecting rod to radius of crank)
The tractive force in a locomotive with two cylinders is given by (where c = Fraction of reciprocating parts per cylinder, m = Mass of reciprocating parts, $$\omega $$ = Angular speed of crank, r = Radius of crank and $$\theta $$ = Angle of inclination of crank to the line of stroke)
The velocity of piston in a reciprocating steam engine is given by (where $$\omega $$ = Angular velocity of crank, r = Radius of crank pin circle, $$\theta $$ = Angle turned by crank from inner dead center and n = Ratio of length of connecting rod to the radius of crank)