If $$x = \frac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 - \sqrt 3 }}$$ and $$y = \frac{{\sqrt 5 - \sqrt 3 }}{{\sqrt 5 + \sqrt 3 }}$$ then $$\left( {x + y} \right)$$ equals ?
If $$x = \frac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 - \sqrt 3 }}$$ and $$y = \frac{{\sqrt 5 - \sqrt 3 }}{{\sqrt 5 + \sqrt 3 }}$$ then $$\left( {x + y} \right)$$ equals ? Correct Answer 8
$$\eqalign{ & x = \frac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 - \sqrt 3 }} \cr & \Rightarrow x = \frac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 - \sqrt 3 }} \times \frac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 + \sqrt 3 }} \cr & \Rightarrow x = \frac{{{{\left( {\sqrt 5 + \sqrt 3 } \right)}^2}}}{2} \cr & {\text{Similarly}} \cr & y = \frac{{\sqrt 5 - \sqrt 3 }}{{\sqrt 5 + \sqrt 3 }} \cr & \Rightarrow y = \frac{{{{\left( {\sqrt 5 - \sqrt 3 } \right)}^2}}}{2} \cr & {\text{Now, }}x + y \cr & = \frac{{5 + 3 + 2\sqrt {15} + 5 + 3 - 2\sqrt {15} }}{2} \cr & = \frac{{16}}{2} \cr & = 8 \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025