In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the roots of the characteristic equation.

In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the roots of the characteristic equation. Correct Answer -37.5±j1290

By applying Kirchhoff’s voltage law to the circuit, On differentiating the above equation and on solving, we get roots of the characteristic equation as -37.5±j1290.

Related Questions

In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complementary current.
In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the particular solution.
In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complete solution of current.
A diode circuit is so arranged that when the switch is open it’s KVL gives Ri+ 1/C ∫i dt = 0 When the switch is closed, Ri+ 1/C ∫i dt = Vs Vs is the dc supply voltage. The diode is so connected that it is forward biased when switch is closed The circuit is mostly likely be a
In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 100cos (103t+π/2), resistance R = 20Ω and inductance L = 0.1H. The particular integral of the solution of ‘ip’ is?
In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 100cos (103t+π/2), resistance R = 20Ω and inductance L = 0.1H. The complete solution of ‘i’ is?