If sinθ + tanθ = 3√3/2, then what is the value of 5cosθ - 2sin2θ + 4tan2θ?

If sinθ + tanθ = 3√3/2, then what is the value of 5cosθ - 2sin2θ + 4tan2θ? Correct Answer 13

sinθ + tanθ = 3√3/2

sinθ + (sinθ/cosθ) = (√3 + 2√3)/2

sinθ + (sinθ/cosθ) = (√3/2) + √3

sinθ + (sinθ/cosθ) = (√3/2) +

After comparing:

sinθ = √3/2

cosθ = 1/2

tanθ = √3

Now,

= 5cosθ - 2sin2θ + 4tan2θ

= 5 × (1/2) - 2 × (√3/2)2 + 4 × (√3)2

= (5/2) - (3/2) + 12

= 13