If sin4θ + 8cos2θ = 4, then what is the value of sin2θ – 2sinθ?

If sin4θ + 8cos2θ = 4, then what is the value of sin2θ – 2sinθ? Correct Answer 2

sin4θ + 8cos2θ = 4

sin4θ + 8cos2θ – 8 = 4 – 8

sin4θ + 8(cos2θ – 1) = –4

Since sin2θ + cos2θ = 1

sin4θ – 8sin2θ = –4

8sin2θ – sin4θ = 4

sin2θ(8 – sin2θ) = 4

8 – sin2θ = 4/sin2θ

sin2θ + 4/sin2θ = 8

(sinθ)2 + (2/sinθ)2 – 2 × sinθ × (2/sinθ) = 8 – 2 × sinθ × (2/sinθ)

(sinθ – 2/sinθ)2 = 8 – 4 = 4

sinθ – 2/sinθ = 2

sin2θ – 2 = 2sinθ

sin2θ – 2sinθ = 2

Related Questions

If 3 + cos2θ = 3(cot2θ + sin2θ), 0° < θ < 90°, then what is the value of (cos θ + 2sinθ)?