Consider the following: 1. sin4θ - sin2θ = cos4θ - cos2θ 2. sin4θ + cos4θ = 1 + 2sin2θ cos2θ 3. tan4θ + tan2θ = sec4θ - sec2θ Which of the above are identities ?
Consider the following: 1. sin4θ - sin2θ = cos4θ - cos2θ 2. sin4θ + cos4θ = 1 + 2sin2θ cos2θ 3. tan4θ + tan2θ = sec4θ - sec2θ Which of the above are identities ? Correct Answer 1 and 3 only
Formula used:
sin2x + cos2x = 1
1 + tan2x = sec2x
Calculation:
Consider 1:
sin4θ - sin2θ = cos4θ - cos2θ
⇒ sin2θ(sin2θ - 1) = cos2θ(cos2θ - 1)
⇒ sin2θ(- cos2θ) = cos2θ(- sin2θ)
Since LHS = RHS, hence true
Consider 2:
sin4θ + cos4θ = 1 + 2sin2θ cos2θ
⇒ sin4θ + cos4θ - 2sin2θ cos2θ = 1
⇒ (sin2θ - cos2θ)2 = 1
Since, LHS is not equal to RHS, hence false
Consider 3:
tan4θ + tan2θ = sec4θ - sec2θ
⇒ tan2θ(tan2θ + 1) = sec2θ(sec2θ - 1)
⇒ tan2θ sec2θ = sec2θ tan2θ
Since, LHS = RHS, hence true
∴ Only 1 and 3 are correct.
মোঃ আরিফুল ইসলাম
Feb 20, 2025