If (4sinθ + 3cosθ)2 – (2sinθ + cosθ)2 = 20, then, what is the value of tanθ ?
If (4sinθ + 3cosθ)2 – (2sinθ + cosθ)2 = 20, then, what is the value of tanθ ? Correct Answer 3/2 or 1
Given:
(4sin θ + 3cos θ)2 – (2sin θ + cos θ)2 = 20
Formula used:
(a + b)2 = a2 + b2 + 2ab
Calculation:
(4sin θ + 3cos θ)2 – (2sin θ + cos θ)2 = 20
⇒ (16sin2θ + 9cos2θ + 24sin θ cos θ) – (4sin2θ + cos2θ + 4sin θ cos θ) = 20
⇒ 12sin2θ + 20sin θ cos θ + 8cos2θ = 20
⇒ 3sin2θ + 5sin θ cos θ + 2cos2θ = 5
⇒ 3sin2θ + 5sin θ cos θ + 2cos2θ = 5 × (sin2θ + cos2θ)
⇒ 2sin2θ – 5sin θ cos θ + 3cos2θ = 0
⇒ (2sin2θ – 2sin θ cos θ – 3sin θ cos θ + 3cos2θ) = 0
⇒ 2sin θ(sin θ – cos θ) – 3cos θ(sin θ – cos θ) = 0
⇒ (sin θ – cos θ) (2sin θ – 3cos θ) = 0
⇒ (sin θ – cos θ) = 0 or (2sin θ – 3cos θ) = 0
⇒ tanθ = 1 or tanθ = 3/2
মোঃ আরিফুল ইসলাম
Feb 20, 2025