1 Answers
Given vectors u, v, and w, the scalar triple product is u*(vXw). So by order of operations, first find the cross product of v and w. Set up a 3X3 determinant with the unit coordinate vectors (i, j, k) in the first row, v in the second row, and w in the third row. Evaluate the determinant (you'll get a 3 dimensional vector). Then dot that with u (to get a scalar). Inner products are abelian, so u*(vXw)=(vXw)*u. Interestingly, the absolute value of the T.S.P. yields the volume of a parallelpiped with 3 edges given by vectors u, v, and w.
4 views
Answered