If H is the orthocentre of triangle ABC, R = circumradius and `P = AH + BH + CH`, then
If H is the orthocentre of triangle ABC, R = circumradius and `P = AH + BH + CH`, then
A. `P = 2 (R + r)`
B. max. of P is 3R
C. min. of P is 3R
D. `P = 2 (R -r)`
5 views
1 Answers
Correct Answer - A::B
`AH = 2R cos A, BH = 2R cos B, CH = 2R cos C`
`:. P = 2R (cos A + cos B+ cos C)`
`= 2R (1+(r)/(R))`
`=2 (R + r)`
We know that in any triangle, `r le(R)/(2)`
`:. P le 2R + R`
`rArr P le 3R`
5 views
Answered