If in triangle `A B C ,sumsinA/2=6/5a n dsumI I_1=9` (where `I_1,I_2a n dI_3` are excenters and `I` is incenter, then circumradius `R` is equal to `(1
If in triangle `A B C ,sumsinA/2=6/5a n dsumI I_1=9`
(where `I_1,I_2a n dI_3`
are excenters and `I`
is incenter, then circumradius `R`
is equal to
`(15)/8`
(b) `(15)/4`
(c) `(15)/2`
(d) `4/(12)`
A. `(15)/(8)`
B. `(15)/(4)`
C. `(15)/(2)`
D. `(4)/(12)`
4 views
1 Answers
Correct Answer - A
We know that `II_(1) = 4R sin A//2`
Now, `sum II_(1) = 9`
`rArr 4R sum sin.(A)/(2) = 9`
or `4R ((6)/(5)) = 9 " or " R = (15)/(8)`
4 views
Answered