The mass (M) shown in the figure oscillates in simple harmonic motion with amplitude of the point (P) is.
A. `(k_(1)A)/(k_(2))`
B. `(k_(2)A)/(k_(1))`
C. `(k_(1)A)/(k_(1) + k_(2))`
D. `(k_(2)A)/(k_(1) + k_(2))`

6 views

1 Answers

Correct Answer - D
In series force remain same, if extension in `k_(1)` and `k_(2)` are `x_(1)` and `x_(2)` respectively.
Then `k_(1)x_(1) = k_(2)x_(2)rArr x_(1)+x_(2) = A`
`rArr x_(1) + (k_(1)x_(1))/(k_(2)) = A rArr x_(1) (k_(1) + k_(2))/(k_(2)) = A`
`rArr x_(1) = (k_(2)A)/((k_(1) + k_(2)))`
Amplitude of point P will be the max, ext. in `k_(1)`.
So amplitude of point P is `(k_(2)A)/(k_(1)+k_(2))`

6 views

Related Questions