If the sum of four numbers in A.P is 24 and the sum of their squares 164, then those numbers are
If the sum of four numbers in A.P is 24 and the sum of their squares 164, then those numbers are
A) 3, 5, 7, 9
B) 3, 4, 5, 6
C) 1, 4, 7,11
D) 2, 4, 6,12
2 Answers
Correct option is (A) 3, 5, 7, 9
Let a-3d, a-d, a+d, a+3d are required 4 numbers in A.P.
Given that sum of these four numbers is 24.
i.e., (a-3d) + (a-d) + (a+d) + (a+3d) = 24
\(\Rightarrow4a=24\)
\(\Rightarrow a=\frac{24}4=6\)
Also given that the sum of their squares is 164.
\(i.e.,(a-3d)^2+(a-d)^2\) \(+(a+d)^2+(a+3d)^2=164\)
\(\Rightarrow(a-3d)^2+(a+3d)^2\) \(+(a-d)^2+(a+d)^2=164\)
\(\Rightarrow2(a^2+(3d)^2)+2(a^2+d^2)=164\) \((\because(a-b)^2+(a+b)^2=2(a^2+b^2))\)
\(\Rightarrow(a^2+9d^2)+(a^2+d^2)=\frac{164}2=82\)
\(\Rightarrow2a^2+10d^2=82\)
\(\Rightarrow10d^2=82-2a^2\)
\(\Rightarrow10d^2=82-2\times6^2\) \((\because a=6)\)
\(=82-72=10\)
\(\Rightarrow d^2=\frac{10}{10}=1\)
\(\therefore d=1\)
Now, \(a-3d=6-3=3,\)
\(a-d=6-1=5,\)
\(a+d=6+1=7\)
and \(a+3d=6+3=9\)
Hence, required numbers are 3, 5, 7, 9.