de-Broglie wavelength of an electron in the nth Bohr orbit is `lambda_(n)` and the angular momentum is `J_(n)` then
de-Broglie wavelength of an electron in the nth Bohr orbit is `lambda_(n)` and the angular momentum is `J_(n)` then
A. `J_(n)proplambda_(n)`
B. `lambda_(n)prop(1)/(J_(n))`
C. `lambda_(n)propJ_(n)^(2)`
D. None of these
5 views
1 Answers
Correct Answer - A
`lambda (h)/(p)=(h)/(mv)`
or `" " lambda prop (1)/(v)`
`:. " " lambda_(n)prop n rArr J_(n)=n(h)/(2pi) i.e., J_(n) prop n`
Hence, `" " lambda_(n)propJ_(n)`
5 views
Answered