1 Answers

Option 4 : Both option 2 and 3

Let the kite is flying at the height h.

There are two possible cases.

Case 1: The kite is somewhere between them.

[ alt="CGL Tier 2 9Q 2" src="//storage.googleapis.com/tb-img/production/19/07/CGL%20Tier%202_9Q%202.PNG" style="width: 185px; height: 179px;">

tan45° = h/x

⇒ 1 = h/x

⇒ h = x

tan60° = h/200 − x

⇒ √3 = h/200 − x

h = x

⇒ √3 = h/200 − h

⇒ h = 200√3/(√3 + 1)

Case 2: The kite is somewhere away from them.

[ alt="CGL Tier 2 9Q 3" src="//storage.googleapis.com/tb-img/production/19/07/CGL%20Tier%202_9Q%203.PNG" style="width: 207px; height: 206px;">

tan60° = h/x

⇒ √3 = h/x

⇒ x = h/√3

tan45° = h/(200 + x)

⇒ h = 200 + x

⇒ h = 200 + h/√3

∴ h = 200√3/(√3 – 1)
4 views

Related Questions