1 Answers
Option 4 : Both option 2 and 3
Let the kite is flying at the height h.
There are two possible cases.
Case 1: The kite is somewhere between them.
[ alt="CGL Tier 2 9Q 2" src="//storage.googleapis.com/tb-img/production/19/07/CGL%20Tier%202_9Q%202.PNG" style="width: 185px; height: 179px;">
tan45° = h/x
⇒ 1 = h/x
⇒ h = x
tan60° = h/200 − x
⇒ √3 = h/200 − x
h = x
⇒ √3 = h/200 − h
⇒ h = 200√3/(√3 + 1)
Case 2: The kite is somewhere away from them.
[ alt="CGL Tier 2 9Q 3" src="//storage.googleapis.com/tb-img/production/19/07/CGL%20Tier%202_9Q%203.PNG" style="width: 207px; height: 206px;">
tan60° = h/x
⇒ √3 = h/x
⇒ x = h/√3
tan45° = h/(200 + x)
⇒ h = 200 + x
⇒ h = 200 + h/√3
∴ h = 200√3/(√3 – 1)
4 views
Answered