1 Answers
Option 4 : 26.57 sq.units
Given:
Angle between two radius = 106°
Area of sector = 23.17
Then,
⇒ 23.17 = (106/360) × (22/7) × (r2)
Radius of circle = 5 units
Using tangent theorem,
In right angled triangle PBA,
Using Pythagoras theorem,
⇒ PA2 = AB2 + PB2
⇒ PA2 = 144 + 25
⇒ PA = 13
Given:
⇒ PD : DA = 3 : 10
(∵ PA = PD + DA)
⇒ PD = 3
Then,
In right angled triangle PDB,
Using Pythagoras theorem,
⇒ PB2 = PD2 + BD2
⇒ BD = (25 – 9)1/2
⇒ BD = 4
⇒ BC = 2BD = 8 Units
Area of circle = 22/7 × 25 = 78.57 sq.units
Area of rhombus = 1/2 × product of diagonals
Area of rhombus = 1/2 × 13 × 8
= 52 sq.units
Required difference =
= 78.57 – 52
= 26.57 sq.units
5 views
Answered