1 Answers

Option 4 : 26.57 sq.units

Given:

Angle between two radius = 106°

Area of sector = 23.17

Then,

⇒ 23.17 = (106/360) × (22/7) × (r2)

Radius of circle = 5 units

Using tangent theorem,

In right angled triangle PBA,

Using Pythagoras theorem,

⇒ PA2 = AB2 + PB2

⇒ PA2 = 144 + 25

⇒ PA = 13

Given:

⇒ PD : DA = 3 : 10

(∵ PA = PD + DA)

⇒ PD = 3

Then,

In right angled triangle PDB,

Using Pythagoras theorem,

⇒ PB2 = PD2 + BD2

⇒ BD = (25 – 9)1/2

⇒ BD = 4

⇒ BC = 2BD = 8 Units

Area of circle = 22/7 × 25 = 78.57 sq.units

Area of rhombus = 1/2 × product of diagonals

Area of rhombus = 1/2 × 13 × 8

= 52 sq.units

Required difference =

= 78.57 – 52

= 26.57 sq.units
5 views

Related Questions