If x = secθ + cosecθ and y = sinθcosθ, then, what is the value of y(x2y – 2)?

If x = secθ + cosecθ and y = sinθcosθ, then, what is the value of y(x2y – 2)? Correct Answer 1

Given:

x = secθ + cosecθ

y = sinθcosθ

Formula Used:

sin2θ + cos2θ = 1

Calculation:

x = secθ + cosecθ

⇒ x = 1/cosθ + 1/sinθ

⇒ x = (sinθ + cosθ)/sinθcosθ

Squaring both sides –

⇒ x2 = (sin2θ + cos2θ + 2sinθcosθ)/(sinθcosθ)2

⇒ x2 = (1 + 2y)/y2

 ⇒ x2y2 = 1 + 2y

⇒ x2y2 – 2y = 1

⇒ y(x2y – 2) = 1

Related Questions

θ is the positive acute angle and sinθ - cosθ = 0, then the value of secθ + cosecθ is?
If tan2θ = 1 - e2, then the value of secθ + tan3θ.cosecθ is?
If 7sin2θ + 3cos2θ = 4, then the value of secθ + cosecθ is?