(221)n + (221)n + 1 where n is a natural number, is not divisible by?

(221)n + (221)n + 1 where n is a natural number, is not divisible by? Correct Answer 11

Given:

The given expression is (221)n + (221)n + 1

Concept Used:

If the number is Divisible by the given number then it should be the multiple of that number

Calculation:

By using the exponential identity the given expression can be written as

∴ (221) n + (221) n + 1 = (221) n + (221) n × 221

Now, by taking (221) n common we get

∴ (221) n × (221 + 1) = (221) n × 222

Now, if the value of n is 1

∴ (221) 1 × 222 = 13 × 17 × 2 × 111

So, the given expression is divisible by 17, 13 and 2

Hence, option (4) is correct

Related Questions

The following questions have three statements. Study the question and the statements and decide which of the statement(s) is/are necessary to answer the question. Find the number of terms divisible by 4 or 6 between two numbers A and B. Statement I: Number of terms divisible by 4 and 6 are 49 and 33 respectively. Statement II: A = 100 and B = 300. Statement III: Number of terms divisible by 12 are 16.