Find the equation of a circle with centre at (a cos α, a sin α) and radius is of 'a' units ?

Find the equation of a circle with centre at (a cos α, a sin α) and radius is of 'a' units ? Correct Answer x<span style="position: relative; line-height: 0; vertical-align: baseline; top: -0.5em;font-size:10.5px;">2</span> + y<span style="position: relative; line-height: 0; vertical-align: baseline; top: -0.5em;font-size:10.5px;">2</span> - 2ax cos α - 2ay sin α = 0 

CONCEPT:

Equation of circle with centre at (h, k) and radius 'r' units is given by:

(x - h)2 + (y - k)2 = r2

CALCULATION:

Here, we have to find the equation of a circle with centre at (a cos α, a sin α) and radius is 'a' units.

As we know that the equation of circle with centre at (h, k) and radius 'r' units is given by (x - h)2 + (y - k)2 = r2

Here, we have h = a cos α, k = a sin α and r = a

So, the equation of the required circle is:

(x - a cos α)2 + (y - a sin α)2 = a2

⇒ x2 + y2 - 2ax cos α - 2ay sin α = 0 

So, the required equation of circle is x2 + y2 - 2ax cos α - 2ay sin α = 0 

Hence, option C is the correct answer.

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))