if \(A= \begin{bmatrix} a & b\\ c & d \end{bmatrix}\), then adj (AT) - (adj A)T is

if \(A= \begin{bmatrix} a & b\\ c & d \end{bmatrix}\), then adj (AT) - (adj A)T is Correct Answer <span class="math-tex">\(\begin{bmatrix} 0 &amp; 0\\ 0 &amp; 0 \end{bmatrix}\)</span>

Properties of adjoint of square properties:

(adj A)= adj (AT)

Hence, adj (AT) - (adj A)T = 0

Related Questions

Consider the 5 × 5 matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 1&2&3&4&5 \\ 5&1&2&3&4 \\ 4&5&1&2&3 \\ 3&4&5&1&2 \\ 2&3&4&5&1 \end{array}} \right
If A is a square matrix, then the value of adj AT – (adj A)T is equal to
If A is a square matrix, then what is adj (A-1) – (adj A)-1 equal to?
If A is a square matrix, then what is adj AT - (adj A)T equal to?