If A is a square matrix, then what is adj AT - (adj A)T equal to? 

If A is a square matrix, then what is adj AT - (adj A)T equal to?  Correct Answer Null matrix

Concept:

Let A be any square matrix. 

(adj AT) = |AT| (AT-1 

(adj A)= (|A| A-1 )T

(adj AT) = (adj A)T

Calculations:

Given, A is a square matrix.

Consider, (adj AT) - (adj A)T

= |AT| (AT-1 - (|A| A-1 )T

= |A|T (AT-1 - (|A| T(A-1 )T

= |A|T (A-1)T - (|A| T(A-1 )T

= 0

= Null Matrix

Hence, If A is a square matrix, then what is adj AT - (adj A)T equal to null matrix.

Related Questions

If A is a square matrix, then the value of adj AT – (adj A)T is equal to
If A is a square matrix, then what is adj (A-1) – (adj A)-1 equal to?
if \(A= \begin{bmatrix} a & b\\ c & d \end{bmatrix}\), then adj (AT) - (adj A)T is