If a and b are any positive integers and a ≡ b(mod n) then 

If a and b are any positive integers and a ≡ b(mod n) then  Correct Answer gcd(a, n) = gcd(b, n)

Concept:

Let n be a fixed positive integer, then two integers a and b are congruent modulo n, denoted by a ≡ b(mod n) if n divides (a - b).

Calculations:

Let d = gcd(a, n) and e = gcd(b, n)

Now 

a ≡ b(mod n) 

⇒ n|(a -b)

⇒ (a - b) = kn for some k ∈ Z

Next,

d = gcd(a, n)

⇒ d|a and d|n

⇒ d|b

Now,

d|b and d|n

⇒ d|e     ( ∵ e = gcd(b, n) )

Now,

e = gcd(b, n)

⇒ e|d     (∵ e|b and e|n )

Hence, d = e, i.e gcd(a, n) = gcd(b, n)

Hence, the correct answer is option 1)

Related Questions