If a and b are any positive integers and a ≡ b(mod n) then
If a and b are any positive integers and a ≡ b(mod n) then Correct Answer gcd(a, n) = gcd(b, n)
Concept:
Let n be a fixed positive integer, then two integers a and b are congruent modulo n, denoted by a ≡ b(mod n) if n divides (a - b).
Calculations:
Let d = gcd(a, n) and e = gcd(b, n)
Now
a ≡ b(mod n)
⇒ n|(a -b)
⇒ (a - b) = kn for some k ∈ Z
Next,
d = gcd(a, n)
⇒ d|a and d|n
⇒ d|b
Now,
d|b and d|n
⇒ d|e ( ∵ e = gcd(b, n) )
Now,
e = gcd(b, n)
⇒ e|d (∵ e|b and e|n )
Hence, d = e, i.e gcd(a, n) = gcd(b, n)
Hence, the correct answer is option 1)
মোঃ আরিফুল ইসলাম
Feb 20, 2025