The value of $$\frac{{\sec \theta \left( {\sin \theta - 2{{\sin }^3}\theta } \right)}}{{2{{\cos }^3}\theta - \cos \theta }}$$    is:

The value of $$\frac{{\sec \theta \left( {\sin \theta - 2{{\sin }^3}\theta } \right)}}{{2{{\cos }^3}\theta - \cos \theta }}$$    is: Correct Answer secθ.tanθ

$$\eqalign{ & \frac{{\sec \theta \left( {\sin \theta - 2{{\sin }^3}\theta } \right)}}{{2{{\cos }^3}\theta - \cos \theta }} \cr & \frac{{\sec \theta .\sin \theta \left( {1 - 2{{\sin }^2}\theta } \right)}}{{\cos \theta \left( {2{{\cos }^2}\theta - 1} \right)}} \cr & \frac{{\sec \theta .\sin \theta \times \cos 2\theta }}{{\cos \theta \times \cos 2\theta }} \cr & \sec \theta .\tan \theta \cr} $$

Related Questions

What is the value of [(cos 3θ + 2cos 5θ + cos 7θ)÷(cos θ + 2cos 3θ + cos 5θ)] + sin 2θ tan 3θ?