If cos(A - B) = $$\frac{{\sqrt 3 }}{2}$$ and sec A = 2, 0° ≤ A ≤ 90°, 0° ≤ B ≤ 90° then what is the measure of B?

If cos(A - B) = $$\frac{{\sqrt 3 }}{2}$$ and sec A = 2, 0° ≤ A ≤ 90°, 0° ≤ B ≤ 90° then what is the measure of B? Correct Answer 30°

$$\eqalign{ & \cos \left( {A - B} \right) = \frac{{\sqrt 3 }}{2} \cr & \cos \left( {A - B} \right) = \cos {30^ \circ } \cr & A - B = {30^ \circ }........\left( {\text{i}} \right) \cr & \sec A = 2 \cr & \cos A = \frac{1}{2} = \cos {60^ \circ } \cr & A = {60^ \circ }........\left( {{\text{ii}}} \right) \cr & {\text{From equation }}\left( {\text{i}} \right){\text{ and }}\left( {{\text{ii}}} \right) \cr & A = {60^ \circ }\,\& \,B = {30^ \circ } \cr} $$

Related Questions

cosA + sinA =2 cosA হলে, cosA - sinA হবে-
If cosA + cosB = x, 1 – sin2A – sin2B = y/2 and cosA.cosB = z, then which of the following is true?