The expression $$\frac{{{{\tan }^6}\theta - {{\sec }^6}\theta + 3{{\sec }^2}\theta \,{{\tan }^2}\theta }}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}}$$     is equal to:

The expression $$\frac{{{{\tan }^6}\theta - {{\sec }^6}\theta + 3{{\sec }^2}\theta \,{{\tan }^2}\theta }}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}}$$     is equal to: Correct Answer -cos<sup>2</sup>θsin<sup>2</sup>θ

$$\eqalign{ & \frac{{{{\tan }^6}\theta - {{\sec }^6}\theta + 3{{\sec }^2}\theta \,{{\tan }^2}\theta }}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr & = \frac{{{{\left( {{{\tan }^2}\theta } \right)}^3} - {{\left( {{{\sec }^2}\theta } \right)}^3} + 3{{\sec }^2}\theta \,{{\tan }^2}\theta }}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr & \left \cr & = \frac{{\left( {{{\tan }^2}\theta - {{\sec }^2}\theta } \right)\left( {{{\tan }^4}\theta + {{\sec }^4}\theta + {{\tan }^2}\theta {{\sec }^2}\theta + 3{{\sec }^2}\theta {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr & = \frac{{ - 1\left( {{{\tan }^4}\theta + {{\sec }^4}\theta + {{\tan }^2}\theta {{\sec }^2}\theta - 3{{\sec }^2}\theta {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr & = \frac{{ - 1\left( {{{\tan }^4}\theta + {{\sec }^4}\theta - 2{{\sec }^2}\theta {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr & = \frac{{ - 1\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr & = \frac{{ - 1}}{{{{\left( {\tan \theta + \cot \theta } \right)}^2}}} \cr & = \frac{{ - 1}}{{{{\left( {\frac{{\sin \theta }}{{\cos \theta }} + \frac{{\cos \theta }}{{\sin \theta }}} \right)}^2}}} \cr & = \frac{{ - 1}}{{{{\left( {\frac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta \sin \theta }}} \right)}^2}}} \cr & = - {\left( {\cos \theta \sin \theta } \right)^2} \cr & = - {\cos ^2}\theta {\sin ^2}\theta \cr} $$

Related Questions