If pq(p + q) = 1, then the value of $$\frac{1}{{{p^3}{q^3}}}$$ - $${p^3}$$ - $${q^3}{\text{,}}$$ is equal to?
If pq(p + q) = 1, then the value of $$\frac{1}{{{p^3}{q^3}}}$$ - $${p^3}$$ - $${q^3}{\text{,}}$$ is equal to? Correct Answer 3
$$\eqalign{ & pq\left( {p + q} \right) = 1 \cr & \Rightarrow p + q = \frac{1}{{pq}} \cr & \,\,\,\,\,\,\, \text{Cubing both side} \cr & \Rightarrow {p^3} + {q^3} +3 pq\left( {p + q} \right) = \frac{1}{{{p^3}{q^3}}} \cr & \,\,\,\,\,\,\, \text{Puting the value of } pq = \frac{1}{\left({p + q}\right)} \cr & \Rightarrow \frac{1}{{{p^3}{q^3}}} - {p^3} - {q^3} = \left( {\frac{{3}}{{p + q}}} \right)\left( {p + q} \right) \cr & \Rightarrow \frac{1}{{{p^3}{q^3}}} - {p^3} - {q^3} = 3 \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025