If pq(p + q) = 1, then the value of $$\frac{1}{{{p^3}{q^3}}}$$  - $${p^3}$$ - $${q^3}{\text{,}}$$  is equal to?

If pq(p + q) = 1, then the value of $$\frac{1}{{{p^3}{q^3}}}$$  - $${p^3}$$ - $${q^3}{\text{,}}$$  is equal to? Correct Answer 3

$$\eqalign{ & pq\left( {p + q} \right) = 1 \cr & \Rightarrow p + q = \frac{1}{{pq}} \cr & \,\,\,\,\,\,\, \text{Cubing both side} \cr & \Rightarrow {p^3} + {q^3} +3 pq\left( {p + q} \right) = \frac{1}{{{p^3}{q^3}}} \cr & \,\,\,\,\,\,\, \text{Puting the value of } pq = \frac{1}{\left({p + q}\right)} \cr & \Rightarrow \frac{1}{{{p^3}{q^3}}} - {p^3} - {q^3} = \left( {\frac{{3}}{{p + q}}} \right)\left( {p + q} \right) \cr & \Rightarrow \frac{1}{{{p^3}{q^3}}} - {p^3} - {q^3} = 3 \cr} $$

Related Questions

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaaigdacaaIXaGaaiilaiaabckacaqG0bGaaeiAaiaa % bwgacaqGUbGaaeiOaiaabAgacaqGPbGaaeOBaiaabsgacaqGGcGaae % iDaiaabIgacaqGLbGaaeiOaiaabAhacaqGHbGaaeiBaiaabwhacaqG % LbGaaeiOaiaab+gacaqGMbGaaeiOamaabmaapaqaa8qacaqG4bGaey % OeI0IaaGymaiaaiodaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa % aGynaaaakiaabckacqGHRaWkcaqGGcWaaSaaa8aabaWdbiaaigdaa8 % aabaWdbmaabmaapaqaa8qacaWG4bGaeyOeI0IaaGymaiaaigdaaiaa % wIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaaaaaaGccaGGGcGaai % Olaaaa!6E72! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = 11,{\rm{\;then\;find\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)If x + 1/(x - 13) = 11, then what will be the value of (x – 13)5 + 1/(x – 11)5?