If x = 332, y = 333, z = 335, then the value of x3 + y3 + z3 - 3xyz is?

If x = 332, y = 333, z = 335, then the value of x3 + y3 + z3 - 3xyz is? Correct Answer 7000

Here, x = 332, y = 333, z = 335
Find x3 + y3 + z3 - 3xyz
$$ = \frac{1}{2}\left( {x + y + z} \right)$$   $$\left$$
$$ = \left( {\frac{{332 + 333 + 335}}{2}} \right)$$   $$\left$$
$$\eqalign{ & = \frac{{1000}}{2}\left \cr & = \frac{{1000}}{2}\left( {14} \right) \cr & = 7000{\text{ }} \cr} $$

Related Questions

Which of the following relation (s) is/are true? I. 333 > 333 II. 333 > 333 III. 333 > 333
Which of the following statement(s) is/are TRUE? I. 333 > 333 II. 333 > (33)3