If x + y + z = 3, and x2 + y2 + z2 = 101, then what is the value of \(\sqrt {{x^3} + {y^3} + {z^3} - 3xyz}\)?
If x + y + z = 3, and x2 + y2 + z2 = 101, then what is the value of \(\sqrt {{x^3} + {y^3} + {z^3} - 3xyz}\)? Correct Answer 21
As we know
(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)
32 = 101 + 2 (xy + yz + zx)
⇒ 2 (xy + yz + zx) = 9 – 101
⇒ 2 (xy + yz + zx) = –92
⇒ (xy + yz + zx) = –92/2
⇒ (xy + yz + zx) = –46
Again, As we know,
x3 + y3 + z3 – 3xyz = (x + y + z)
⇒ x3 + y3 + z3 – 3xyz = 3 = 3 = 3 × 147 = 441
⇒ √ = √441 = 21
মোঃ আরিফুল ইসলাম
Feb 20, 2025