If x + y + z = 3, and x2 + y2 + z2 = 101, then what is the value of \(\sqrt {{x^3} + {y^3} + {z^3} - 3xyz}\)?

If x + y + z = 3, and x2 + y2 + z2 = 101, then what is the value of \(\sqrt {{x^3} + {y^3} + {z^3} - 3xyz}\)? Correct Answer 21

As we know

(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)

32 = 101 + 2 (xy + yz + zx)

⇒ 2 (xy + yz + zx) = 9 – 101

⇒ 2 (xy + yz + zx) = –92

⇒ (xy + yz + zx) = –92/2

⇒ (xy + yz + zx) = –46

Again, As we know,

x3 + y3 + z3 – 3xyz = (x + y + z)

⇒ x3 + y3 + z3 – 3xyz = 3 = 3 = 3 × 147 = 441

⇒ √ = √441 = 21

Related Questions