If a2 sec2x - b2 tan2x = c2, then the value of sec2x + tan2x is equal to (assume b2 ≠ a2)

If a2 sec2x - b2 tan2x = c2, then the value of sec2x + tan2x is equal to (assume b2 ≠ a2) Correct Answer $$\frac{{{b^2} + {a^2} - 2{c^2}}}{{{b^2} - {a^2}}}$$

$$\eqalign{ & {a^2}{\sec ^2}x - {b^2}{\tan ^2}x = {c^2} \cr & \Rightarrow {a^2}\left( {1 + ta{n^2}x} \right) - {b^2}{\tan ^2}x = {c^2} \cr & \Rightarrow {a^2} + {a^2}{\tan ^2}x - {b^2}{\tan ^2}x = {c^2} \cr & \Rightarrow {a^2} + ta{n^2}x\left( {{a^2} - {b^2}} \right) = {c^2} \cr & \Rightarrow {a^2} - {c^2} = {\tan ^2}x\left( {{b^2} - {a^2}} \right) \cr & \Rightarrow \frac{{{a^2} - {c^2}}}{{{b^2} + {a^2}}} = {\text{ta}}{{\text{n}}^2}x \cr & \Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \cr & \Rightarrow {\sec ^2}x = {\tan ^2}x + 1 \cr & \Rightarrow 1 + \frac{{{a^2} - {c^2}}}{{{b^2} - {a^2}}} \cr & \Rightarrow \frac{{{b^2} - {a^2} + {a^2} - {c^2}}}{{{b^2} - {a^2}}} \cr & \Rightarrow \frac{{{b^2} - {c^2}}}{{{b^2} - {a^2}}} \cr & {\sec ^2}x + {\tan ^2}x \cr & = \frac{{{b^2} - {c^2}}}{{{b^2} - {a^2}}} + \frac{{{a^2} - {c^2}}}{{{b^2} - {a^2}}} \cr & = \frac{{{b^2} + {a^2} - 2{c^2}}}{{{b^2} - {a^2}}} \cr} $$

Related Questions

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaaigdacaaIXaGaaiilaiaabckacaqG0bGaaeiAaiaa % bwgacaqGUbGaaeiOaiaabAgacaqGPbGaaeOBaiaabsgacaqGGcGaae % iDaiaabIgacaqGLbGaaeiOaiaabAhacaqGHbGaaeiBaiaabwhacaqG % LbGaaeiOaiaab+gacaqGMbGaaeiOamaabmaapaqaa8qacaqG4bGaey % OeI0IaaGymaiaaiodaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa % aGynaaaakiaabckacqGHRaWkcaqGGcWaaSaaa8aabaWdbiaaigdaa8 % aabaWdbmaabmaapaqaa8qacaWG4bGaeyOeI0IaaGymaiaaigdaaiaa % wIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaaaaaaGccaGGGcGaai % Olaaaa!6E72! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = 11,{\rm{\;then\;find\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)If x + 1/(x - 13) = 11, then what will be the value of (x – 13)5 + 1/(x – 11)5?