The value of $$\frac{1}{{1 + \sqrt 2 + \sqrt 3 }} + $$ $$\frac{1}{{1 - \sqrt 2 + \sqrt 3 }}$$ is = ?
The value of $$\frac{1}{{1 + \sqrt 2 + \sqrt 3 }} + $$ $$\frac{1}{{1 - \sqrt 2 + \sqrt 3 }}$$ is = ? Correct Answer 1
$$\eqalign{ & \frac{1}{{1 + \sqrt 2 + \sqrt 3 }} + \frac{1}{{1 - \sqrt 2 + \sqrt 3 }} \cr & = \frac{1}{{1 + \sqrt 3 + \sqrt 2 }} + \frac{1}{{1 + \sqrt 3 - \sqrt 2 }} \cr & = \frac{{1 + \sqrt 3 - \sqrt 2 + 1 + \sqrt 3 + \sqrt 2 }}{{{{\left( {1 + \sqrt 3 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}} \cr & = \frac{{2 + 2\sqrt 3 }}{{4 + 2\sqrt 3 - 2}} \cr & = \frac{{2 + 2\sqrt 3 }}{{2 + 2\sqrt 3 }} \cr & = 1 \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025