If $$\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1$$     and $$\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0$$     where a, b, c, p, q, r are non-zero real numbers, then $$\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}$$    is equal to = ?

If $$\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1$$     and $$\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0$$     where a, b, c, p, q, r are non-zero real numbers, then $$\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}$$    is equal to = ? Correct Answer 1

$$\eqalign{ & \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\,\,\,\, \cr & \Rightarrow aqr + bpr + cpq = 0....({\text{i}}) \cr & \frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\,\, \cr & \Rightarrow {\left( {\frac{p}{a} + \frac{q}{b} + \frac{r}{c}} \right)^2} = 1 \cr & \Rightarrow {\text{ }}\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\, + 2\left( {\frac{{pq}}{{ab}} + \frac{{pr}}{{ac}} + \frac{{qr}}{{bc}}} \right) = 1 \cr & \Rightarrow \frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}} + \frac{{2\left( {pqc + prb + qra} \right)}}{{abc}} = 1 \cr & \Rightarrow \frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}} = 1....\left \cr} $$

Related Questions