The resonance widths $$\Gamma $$ of $$\rho ,\,\omega $$  and $$\phi $$ particle resonances satisfy the relation $${\Gamma _\rho } > {\Gamma _\omega } > {\Gamma _\phi }$$   . Their lifetimes r satisfy the relation

The resonance widths $$\Gamma $$ of $$\rho ,\,\omega $$  and $$\phi $$ particle resonances satisfy the relation $${\Gamma _\rho } > {\Gamma _\omega } > {\Gamma _\phi }$$   . Their lifetimes r satisfy the relation Correct Answer $${\tau _\rho }

Related Questions

In a two-electron atomic system having orbital and spin angular momenta $${l_1}{l_2}$$  and $${s_1}{s_2}$$  respectively, the coupling strengths are defined as $${\Gamma _{{l_1}{l_2}}},\,{\Gamma _{{s_1}{s_2}}},\,{\Gamma _{{l_1}{s_1}}},\,{\Gamma _{{l_2}{s_2}}},\,{\Gamma _{{l_1}{l_2}}}$$      and $${\Gamma _{{l_2}{s_1}}}.$$  For the jj coupling. scheme to be applicable, the coupling strengths must satisfy the condition
Two monochromatic waves having frequencies $$\omega $$ and $$\omega + \Delta \omega \left( {\Delta \omega \ll \omega } \right)$$    and corresponding wavelengths $$\lambda $$ and $$\lambda - \Delta \lambda \left( {\Delta \lambda \ll \lambda } \right)$$    of same polarization, travelling along X-axis are superimposed on each other. The phase velocity and group velocity of the resultant wave are respectively given by