The value of the integral $$\oint {\frac{{2{\text{z}} + 5}}{{\left( {{\text{z}} - \frac{1}{2}} \right)\left( {{{\text{z}}^2} - 4{\text{z}} + 5} \right)}}{\text{dz}}} $$      over the contour |z| = 1, taken in the anti-clockwise direction, would be

The value of the integral $$\oint {\frac{{2{\text{z}} + 5}}{{\left( {{\text{z}} - \frac{1}{2}} \right)\left( {{{\text{z}}^2} - 4{\text{z}} + 5} \right)}}{\text{dz}}} $$      over the contour |z| = 1, taken in the anti-clockwise direction, would be Correct Answer $$\frac{{48\pi {\text{i}}}}{{13}}$$

Related Questions

The value of the contour integral $$\oint\limits_{\left| {{\text{z}} - {\text{i}}} \right| = 2} {\frac{1}{{{{\text{z}}^2} + 4}}{\text{dz}}} $$    in positive sense is