$$\sqrt {6 - 4\sqrt 3 + \sqrt {16 - 8\sqrt 3 } } $$ is equal to = ?
$$\sqrt {6 - 4\sqrt 3 + \sqrt {16 - 8\sqrt 3 } } $$ is equal to = ? Correct Answer $$\sqrt 3 - 1$$
$$\eqalign{ & \sqrt {6 - 4\sqrt 3 + \sqrt {16 - 8\sqrt 3 } } \cr & = \sqrt {6 - 4\sqrt 3 + \sqrt {12 + 4 - 8\sqrt 3 } } \cr & = \sqrt {6 - 4\sqrt 3 + \sqrt {{{\left( {2\sqrt 3 } \right)}^2} + {{\left( 2 \right)}^2} - 2 \times 2\sqrt 3 \times 2} } \cr & = \sqrt {6 - 4\sqrt 3 + \sqrt {{{\left( {2\sqrt 3 - 2} \right)}^2}} } \cr & = \sqrt {6 - 4\sqrt 3 + 2\sqrt 3 - 2} \cr & = \sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2 \times \sqrt 3 \times 1} \cr & = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \cr & = \sqrt 3 - 1 \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025