Two trains start simultaneously (with uniform speeds) from two stations 270 km apart, each to the opposite station; they reach their destinations in $$6\frac{1}{4}$$ hours and 4 hours after they meet. The rate at which the slower train travels is :

Two trains start simultaneously (with uniform speeds) from two stations 270 km apart, each to the opposite station; they reach their destinations in $$6\frac{1}{4}$$ hours and 4 hours after they meet. The rate at which the slower train travels is : Correct Answer 24 km/hr

$$\eqalign{ & {\text{Ratio of speeds}} \cr & {\text{ = }}\sqrt 4 :\sqrt {6\frac{1}{4}} \cr & = \sqrt 4 :\sqrt {\frac{{25}}{4}} \cr & = 2:\frac{5}{2} \cr & = 4:5 \cr }$$
Let the speeds of the two trains be 4x and 5x km/hr respectively
Then time taken by trains to meet each other
$$\eqalign{ & {\text{ = }}\left( {\frac{{270}}{{4x + 5x}}} \right){\text{hr}} \cr & {\text{ = }}\left( {\frac{{270}}{{9x}}} \right){\text{hr = }}\left( {\frac{{30}}{x}} \right){\text{hr}} \cr & {\text{Time taken by slower train to travel}} \cr & {\text{ 270 km = }}\left( {\frac{{270}}{{4x}}} \right){\text{hr}} \cr & \therefore \frac{{270}}{{4x}} = \frac{{30}}{x} + 6\frac{1}{4} \cr & \Rightarrow \frac{{270}}{{4x}} - \frac{{30}}{x} = \frac{{25}}{4} \cr & \Rightarrow \frac{{150}}{{4x}} = \frac{{25}}{4} \cr & \Rightarrow 100x = 600 \cr & \Rightarrow x = 6 \cr & {\text{Hence speed of slower train}} \cr & {\text{ = 4}}x \cr & = \,24\,{\text{km/hr}} \cr} $$

Related Questions

The question below is followed by two statements I and II. You have to determine whether the data given is sufficient for answering the question. You should use the data and your knowledge of mathematics to choose the best possible answer. Train A departs at 9 : 20 am and train B departs at 10 : 50 am and they travel towards each other. After how much amount of time will the trains meet? I) Train A travels with a speed of 10 kmph and the difference between the speed of two trains is 6 kmph and both the trains are 160 km apart. II) Train B travels at a speed greater than Train A which travels with 10 kmph by 6kmph separated by a distance of 160 km.