While numerically solving the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} + 2{\text{x}}{{\text{y}}^2} = 0,\,{\text{y}}\left( 0 \right) = 1$$ using Euler's predictor-corrector (improved Euler-Cauchy) with a step size of 0.2, the value of y after the first step is
While numerically solving the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} + 2{\text{x}}{{\text{y}}^2} = 0,\,{\text{y}}\left( 0 \right) = 1$$ using Euler's predictor-corrector (improved Euler-Cauchy) with a step size of 0.2, the value of y after the first step is Correct Answer 0.96
মোঃ আরিফুল ইসলাম
Feb 20, 2025