Related Questions

In a cubic crystal, atoms of mass M1 lie on one set of planes and atoms of mass M2 lie on planes interleaved between those of the first set. If C is the forte constant between nearest neighbour planes, the frequency of lattice vibrations for the optical phonon branch with wave vector k = 0 is
A cubic cell consists of two atoms of masses m, and m2(m1 > m2) with m1 and m2 atoms situated on alternate planes. Assuming only nearest neighbour interactions, the centre of mass of the two atoms
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are