দুটি সংখ্যা গুণফল ৪০ এবং ভাগফল ৫/২ হলে সংখ্যাদ্বয়ের যোগফল কত?

দুটি সংখ্যা গুণফল ৪০ এবং ভাগফল ৫/২ হলে সংখ্যাদ্বয়ের যোগফল কত? সঠিক উত্তর ১৪

<math xmlns = "http://www.w3.org/1998/Math/MathML"><mtext>&#xA0;&#x9AE;&#x9A8;&#x9C7;&#xA0;&#x995;&#x9B0;&#x9BF;,&#xA0;&#x9B8;&#x982;&#x996;&#x9CD;&#x9AF;&#x9BE;&#xA0;&#x9A6;&#x9C1;&#x99F;&#x9BF;&#xA0;x&#xA0;&#x993;&#xA0;y&#x964;</mtext><mspace linebreak = "newline"/><mtext>&#xA0;&#x9AA;&#x9CD;&#x9B0;&#x9B6;&#x9CD;&#x9A8;&#x9BE;&#x9A8;&#x9C1;&#x9B8;&#x9BE;&#x9B0;&#x9C7;,&#xA0;</mtext><mspace linebreak = "newline"/><mi>x</mi><mo>&#xA0;</mo><mi>y</mi><mo>&#xA0;</mo><mo> = </mo><mtext>&#x9EA;&#x9E6;&#xA0;...........&#xA0;(i)&#xA0;</mtext><mspace linebreak = "newline"/><mtext>&#x98F;&#x9AC;&#x982;&#xA0;</mtext><mo>&#xA0;</mo><mfrac><mi>x</mi><mi>y</mi></mfrac><mo>&#xA0;</mo><mo> = </mo><mfrac><mi>&#x9EB;</mi><mi>&#x9E8;</mi></mfrac><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo><mspace linebreak = "newline"/><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo><mo>&#xA0;</mo><mtext>&#x9B9;&#x9A4;&#x9C7;,&#xA0;x&#xA0; = &#xA0;</mtext><mfrac><mrow><mi>&#x9EB;</mi><mi>y</mi></mrow><mi>&#x9E8;</mi></mfrac><mo>&#xA0;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo><mspace linebreak = "newline"/><mi>x</mi><mo>&#xA0; = &#xA0;</mo><mfrac><mrow><mi>&#x9EB;</mi><mi>y</mi></mrow><mi>&#x9E8;</mi></mfrac><mo>&#xA0;</mo><mtext>(i)&#xA0;&#x9A8;&#x982;&#xA0;&#x98F;&#xA0;&#x9AC;&#x9B8;&#x9BF;&#x9AF;&#x9BC;&#x9C7;&#xA0;&#x9AA;&#x9BE;&#x987;,&#xA0;</mtext><mspace linebreak = "newline"/><mfrac><mrow><mi>&#x9EB;</mi><mi>y</mi></mrow><mi>&#x9E8;</mi></mfrac><mo>.</mo><mtext>y&#xA0; = &#xA0;&#x9EA;&#x9E6;</mtext><mspace linebreak = "newline"/><mtext>&#x9AC;&#x9BE;,&#xA0;</mtext><mfrac><mrow><mi>&#x9EB;</mi><msup><mi>y</mi><mi>&#x9E8;</mi></msup></mrow><mi>&#x9E8;</mi></mfrac><mo>.</mo><mtext>y&#xA0; = &#xA0;&#x9EA;&#x9E6;</mtext><mspace linebreak = "newline"/><mi>&#x9AC;&#x9BE;</mi><mo>,</mo><mo>&#xA0;</mo><mi>&#x9EB;</mi><msup><mi>y</mi><mi>&#x9E8;</mi></msup><mo>&#xA0;</mo><mtext> = &#xA0;&#x9EE;&#x9E6;&#xA0;</mtext><mspace linebreak = "newline"/><mi>&#x9AC;&#x9BE;</mi><mo>,</mo><mo>&#xA0;</mo><msup><mi>y</mi><mi>&#x9E8;</mi></msup><mo>&#xA0;</mo><mo> = </mo><mtext>&#x9E7;&#x9EC;&#xA0;</mtext><mspace linebreak = "newline"/><mo>&#x2234;</mo><mo>&#xA0;</mo><mtext>y&#xA0; = &#xA0;&#x9EA;&#xA0;</mtext><mspace linebreak = "newline"/><mi>y</mi><mo>&#xA0;</mo><mtext>&#xA0;&#x98F;&#x9B0;&#xA0;&#x9AE;&#x9BE;&#x9A8;&#xA0;(iii)&#xA0;&#x98F;&#xA0;&#x9AC;&#x9B8;&#x9BF;&#x9AF;&#x9BC;&#x9C7;,&#xA0;</mtext><mspace linebreak = "newline"/><mi>x</mi><mtext>&#xA0; = &#xA0;</mtext><mfrac><mtext>&#x9EB;&#xA0;&#xD7;&#xA0;&#x9EA;</mtext><mi>&#x9E8;</mi></mfrac><mtext>&#xA0; = &#xA0;&#x9E7;&#x9E6;&#xA0;</mtext><mspace linebreak = "newline"/><mo>&#x2234;</mo><mo>&#xA0;</mo><mtext>&#x9B8;&#x982;&#x996;&#x9CD;&#x9AF;&#x9BE;&#xA0;&#x9A6;&#x9C1;&#x99F;&#x9BF;&#xA0;&#x9E7;&#x9E6;&#xA0;&#x993;&#xA0;&#x9EA;&#xA0;&#x98F;&#x9AC;&#x982;&#xA0;&#x98F;&#x9A6;&#x9C7;&#x9B0;&#xA0;&#x9AF;&#x9BE;&#x9C7;&#x997;&#x9AB;&#x9B2;&#xA0; = &#x9E7;&#x9E6;&#xA0; + &#xA0;&#x9EA;&#xA0; = &#xA0;&#x9E7;&#x9EA;</mtext></math>

Related Questions