If we use a Laplacian to obtain sharp image for unsharp mask filtered image fs(x, y) of f(x, y) as input image, and if the center coefficient of the Laplacian mask is negative then, which of the following expression gives the high boost filtered image fhb, if ∇2 f represent Laplacian?

If we use a Laplacian to obtain sharp image for unsharp mask filtered image fs(x, y) of f(x, y) as input image, and if the center coefficient of the Laplacian mask is negative then, which of the following expression gives the high boost filtered image fhb, if ∇2 f represent Laplacian? Correct Answer fhb = A f(x, y) – ∇2 f(x,y)

If Laplacian is used to obtain sharp image for unsharp mask filtered image, then .

Related Questions

Which of the following gives an expression for high boost filtered image fhb, if f represents an image, f blurred version of f, fs unsharp mask filtered image and A ≥ 1?
High boost filtered image is expressed as: fhb = A f(x, y) – flp(x, y), where f(x, y) the input image, A is a constant and flp(x, y) is the lowpass filtered version of f(x, y). Which of the following fact validates if A=1?
High boost filtered image is expressed as: fhb = A f(x, y) – flp(x, y), where f(x, y) the input image, A is a constant and flp(x, y) is the lowpass filtered version of f(x, y). Which of the following fact(s) validates if A increases past 1?
Applying Laplacian produces image having featureless background which is recovered maintaining the sharpness of Laplacian operation by either adding or subtracting it from the original image depending upon the Laplacian definition used. Which of the following is true based on above statement?