If α,β,ȣ are the roots of equation x3–3x2+3x+7=0 and ω is cube root of unity, then evaluate (α-1)/(β-1)+(β-1)/(ȣ-1)+(ȣ-1)/(α-1).

If α,β,ȣ are the roots of equation x3–3x2+3x+7=0 and ω is cube root of unity, then evaluate (α-1)/(β-1)+(β-1)/(ȣ-1)+(ȣ-1)/(α-1). Correct Answer 3ω2

equation can be simplified to (x-1)3=-8⇒(x-1)/(-2)=(1)1/3⇒roots: 1,ω,ω2 ⇒ α=-1, β=1-2ω, ȣ=1-2ω2. Therefore, required value=-2/(-2ω)+(-2ω)/(-2ω2)+(-2ω2)/(-2) = 1/ω+1/ω+1/ω=3/ω=3ω2.

Related Questions

Which of the following represents the correct matching set.   Type of root   Example a) Taproot root i) Banyan tree b) Adventitious root ii) Carrot c) Prop root iii) Sugarcane d) Stilt root iv) Sweet potato