Find the value of ∫x3 Sin(x)dx.
Find the value of ∫x3 Sin(x)dx. Correct Answer – x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x)
Add constant automatically Let f(x) = x3 Sin(x) ∫x3 Sin(x)dx = – x3 Cos(x) + 3∫x2 Cos(x)dx ∫x2 Cos(x)dx = x2 Sin(x) – 2∫xSin(x)dx ∫xSin(x)dx = – xCos(x) + ∫Cos(x)dx = – xCos(x) + Sin(x) => ∫x3 Sin(x)dx = – x3 Cos(x) + 3] => ∫x3 Sin(x)dx = – x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x).
মোঃ আরিফুল ইসলাম
Feb 20, 2025