nth derivative of y = sin2x cos3x is

nth derivative of y = sin2x cos3x is Correct Answer 1⁄8 cos⁡(x + nπ⁄2) –1⁄16 5n cos⁡(x + nπ⁄2) – 1⁄16 3n cos⁡(3x + nπ⁄2)

y = sin2x cos2x cos(x) y = 1⁄4 sin22x cos2x cos(x) y = 1⁄8 (2sin22x) cos(x) y = 1⁄8 (1 – cos4x) cos(x) y = 1⁄8 (1 – cos4x) cos(x) y = 1⁄8 cos(x) – 1⁄8 cos4x cos(x) y = 1⁄8 cos(x) – 1⁄16 (cos5x + cos(3x)) Now, nth derivative is yn = 1⁄8 cos⁡(x + nπ⁄2) – 1⁄16 5n cos⁡(x + nπ⁄2) – 1⁄16 3n cos⁡(3x + nπ⁄2).

Related Questions

For the existence of the nth (n is varying from 1 to until the derivative is becoming 0) derivative of an equation, the equation should have __________
f(x)=sin2x, g(x)=sin2x:x এর প্রেক্ষিতে  fxgx এর অনির্দিষ্ট যোগজ কোনটি? 
nth derivative of Sinh(x) is
If y=log⁡(x⁄(x2 – 1)), then nth derivative of y is ?
Find nth derivative of y = Sin(x) Cos3(x)
Find nth derivative of x2y2 + xy1 + y = 0
The nth derivative of x2y2 + (1-x2)y1 + xy = 0 is,