Which of the given Options provides the increasing order of asymptotic complexity of functions f1, f2, f3, and f4? f1(n) = 2n f2(n) = n3/2 f3(n) = n log2 n f4(n) = nlog2n

Which of the given Options provides the increasing order of asymptotic complexity of functions f1, f2, f3, and f4? f1(n) = 2n f2(n) = n3/2 f3(n) = n log2 n f4(n) = nlog2n Correct Answer f<sub>3</sub>, f<sub>2</sub>, f<sub>4</sub>, f<sub>1</sub>

The correct answer is option 1

Explanation:

Taking log base 2 on all the functions

 Function  Taking log  Taking a large number n = 220
 f1(n) = 2n  f1(n) = n× log22 = n  f1 = 220
 f2(n) = n3/2  f2(n) = 3/2 log2n  f2 = (3/2) × log2220= (3/2)× 20 =30
 f3(n) = n × log2 n  f3(n) = log2 n +log2 log2 n  f3 = log2220 +log2 log2 220 = 25
 f4(n) = nlog2n  f4(n) = log2 n × log2 n

 

 f4 =  log220× log2 220= 20 × 20=400

 Increasing order of asymptotic complexity of functions f1, f2, f3 and f4  is f3 < f2 <f4 <​ f1

Related Questions

Solve for x: log2(x2-3x)=log2(5x-15).