If the total surface area of the regular tetrahedron is 144√3 cm2, then what is the lateral surface area of the regular tetrahedron?
If the total surface area of the regular tetrahedron is 144√3 cm2, then what is the lateral surface area of the regular tetrahedron? Correct Answer 108√3 cm<span style="position: relative; line-height: 0; vertical-align: baseline; top: -0.5em; font-size:10.5px;">2</span>
Given:
The total surface area of the regular tetrahedron = 144√3 cm2
Formula Used:
The total surface area of the regular tetrahedron = √3 × a2
The lateral surface area of the regular tetrahedron = (3√3 × a2)/4
Where a is the side of the regular tetrahedron
Calculation:
The total surface area of the regular tetrahedron = 144√3 cm2
⇒ √3 × a2 = 144√3
⇒ a2 = 144
⇒ a = √144
⇒ a = 12 cm
The lateral surface area of the regular tetrahedron = (3√3 × a2)/4
⇒ 3√3 × (12)2/4
⇒ 3√3 × 144/4
⇒ 3√3 × 36
⇒ 108√3 cm2
∴ The lateral surface area of the regular tetrahedron is 108√3 cm2